Suggested Solutions to Midterm Test for MATH4220

March 9, 2017

1. (20 points)
(a) (10 points) Find all the solutions to

$$
u_{x}-2 u_{y}+2 u=1
$$

(b) (10 points) Solve the problem

$$
\left\{\begin{array}{l}
y \partial_{x} u+3 x^{2} y \partial_{y} u=0 \\
u(x=0, y)=y^{2}
\end{array}\right.
$$

In which region of the $x y$-plane is the solution uniquely determined?

Solution:

(a) Method 1:Coordinate Method:

Change variables to

$$
x^{\prime}=x-2 y, y^{\prime}=-2 x-y
$$

Hence $u_{x}-2 u_{y}+2 u=5 u_{x^{\prime}}+2 u=1$. Thus the solution is $u\left(x^{\prime}, y^{\prime}\right)=f\left(y^{\prime}\right) e^{-\frac{2}{5} x^{\prime}}+\frac{1}{2}$, with f an arbitrary function of one variable. Therefore, the general solutions are

$$
u(x, y)=\frac{1}{2}+f(-2 x-y) e^{-\frac{2}{5}(x-2 y)}
$$

where f is an arbitrary function.

Method 2: Geometric Method

The corresponding characteristic curves are

$$
\frac{d x}{1}=\frac{d y}{-2}
$$

that is, $y=-2 x+C$ where C is an arbitrary constant.Then

$$
\frac{d}{d x} u(x,-2 x+C)=u_{x}(x,-2 x+C)-2 u(x,-2 x+C)=-2 u(x,-2 x+C)+1
$$

Hence $u(x,-2 x+C)=f(C) e^{-2 x}+\frac{1}{2}$, where f is an arbitrary function. Therefore,

$$
u(x, y)=\frac{1}{2}+f(2 x+y) e^{-2 x}
$$

where f is an arbitrary function.
(b) The characteristic curves are

$$
\frac{d y}{3 x^{2} y}=\frac{d x}{y}
$$

that is, $y=x^{3}+C$ where C is an arbitrary constant. Then

$$
\frac{d}{d x} u\left(x, x^{3}+C\right)=u_{x}+3 x^{2} u_{y}=0
$$

Hence $u\left(x, x^{3}+C\right)=f(C)$ where f is an arbitrary function. Thus

$$
u(x, y)=f\left(y-x^{3}\right)
$$

Besides, the auxiliary condition gives that $y^{2}=u(x=0, y)=f(y)$. Hence, the solution is

$$
u(x, y)=\left(y-x^{3}\right)^{2}
$$

Note that when $y=0$ the equation vanishes, thus the characteristic curves break down when $y=0$, therefore the solution is uniquely determined on $\left\{(x, y): y>0, y>x^{3}\right\} \cup\{(x, y): y<$ $\left.0, y<x^{3}\right\} \cup\{(0,0)\}$. (Remark: if the solution is continuous, then u is uniquely determined on the whole plane by the continuity of u).

2. (20 points)

(a) (4 points) What is the type of the equation

$$
\partial_{t}^{2} u+\partial_{x t}^{2} u-2 \partial_{x}^{2} u=0 ?
$$

(b) (16 points) Solve the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u+\partial_{x t}^{2} u-2 \partial_{x}^{2} u=2, \quad-\infty<x<+\infty, \quad-\infty<t<+\infty \\
u(x, t=0)=x^{2}, \quad \partial_{t} u(x, t=0)=0, \quad-\infty<x<+\infty
\end{array}\right.
$$

Solution:

(a) Since $a_{11}=1, a_{12}=\frac{1}{2}, a_{22}=-2$, then $a_{12}^{2}-a_{11} a_{22}=\frac{9}{4}>0$, hence it is hyperbolic.
(b) Let

$$
t=t^{\prime}, x=\frac{1}{2} t^{\prime}+\frac{3}{2} x^{\prime}
$$

and $v\left(x^{\prime}, t^{\prime}\right)=u(x, t)$, then v satisfies

$$
\left\{\begin{array}{l}
\partial_{t^{\prime}}^{2} v-\partial_{x^{\prime}}^{2} v=2 \\
v\left(x^{\prime}, t^{\prime}=0\right)=\left(\frac{3}{2} x^{\prime}\right)^{2}, \quad \partial_{t^{\prime}} v\left(x^{\prime}, t^{\prime}=0\right)=\frac{3}{2} x^{\prime}
\end{array}\right.
$$

Thus d'Alembert formula gives that

$$
\begin{aligned}
v\left(x^{\prime}, t^{\prime}\right) & \left.=\frac{1}{2}\left\{\frac{9}{4}\left(x^{\prime}+t^{\prime}\right)^{2}+\frac{9}{4}\left(x^{\prime}-t^{\prime}\right)^{2}\right)\right\}+\frac{1}{2} \int_{x^{\prime}-t^{\prime}}^{x^{\prime}+t^{\prime}} \frac{3}{2} y d y+\frac{1}{2} \int_{0}^{t^{\prime}} \int_{x^{\prime}-\left(t^{\prime}-s\right)}^{x^{\prime}+\left(t^{\prime}-s\right)} 2 d y d s \\
& =\frac{13}{4} t^{\prime 2}+\frac{9}{4} x^{\prime 2}+\frac{3}{2} x^{\prime} t^{\prime}
\end{aligned}
$$

Then

$$
u(x, t)=v\left(x^{\prime}, t^{\prime}\right)=v\left(\frac{2}{3} x-\frac{1}{3} t, t\right)=3 t^{2}+x^{2}
$$

3. (20 points)

(a) (5 points) State the definition of a well-posed PDE problem.
(b) (5 points) Is the following problem well-posed? Why?

$$
\left\{\begin{array}{l}
\frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=1, \quad 0<x<1 \\
u^{\prime}(0)=1, u^{\prime}(1)=0
\end{array}\right.
$$

(c) ($\mathbf{1 0}$ points) State and prove the uniqueness and continuous dependence of solutions to the problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<1, \quad 0<t<T, \quad T>0 \\
\partial_{x} u(0, t)=0, \partial_{x} u(1, t)=0, \quad t>0 \\
u(x, t=0)=\phi(x), \quad 0 \leq x \leq 1
\end{array}\right.
$$

Solution:

(a) A PDE problem is said to be well-posed if the following three properties are satisfied:

Existence: There exists at least one solution $u(x, t)$ satisfying all these conditions.
Uniqueness: There is at most one solution.
Stability: The unique solution $u(x, t)$ depends in a stable manner on the data of the problem. This means that if the data are changed a little, the corresponding solution changes only a little.
(b) The problem is not well-posed, since the solution doesn't exist.

Indeed, the general solution to the ODE $\frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=1$ is $u(x)=C_{1}+C_{2} e^{-x}+x$. Then $u^{\prime}(x)=$ $-C_{2} e^{-x}+1$, and boundary condition $u^{\prime}(0)=1$ implies that $C_{2}=0$, however $u^{\prime}(1)=1 \neq 0$. Thus the solution cannot exist.
(c) Uniqueness: Let u_{1} and u_{2} be any two solutions to the problem, then $u_{1}=u_{2}$.

Continuous dependence on initial data: If u_{1} and u_{2} are solutions to the problem with initial condition $\phi_{1}(x)$ and $\phi_{2}(x)$ respectively, then

$$
\sup _{0 \leq t \leq T} \int_{0}^{1}\left|u_{1}-u_{2}\right|^{2} d x \leq \int_{0}^{1}\left|\phi_{1}-\phi_{2}\right|^{2} d x .
$$

Proof:

(Uniqueness): Let $v=u_{1}-u_{2}$, then v satisfies

$$
\left\{\begin{array}{l}
\partial_{t} v=\partial_{x}^{2} v, \quad 0<x<1, \quad 0<t<T, T>0 \\
\partial_{x} v(0, t)=0, \partial_{x} v(1, t)=0, \quad t>0 \\
v(x, t=0)=0, \quad 0 \leq x \leq 1
\end{array}\right.
$$

Multiplying the both sides of $\partial_{t} v=\partial_{x}^{2} v$ by v and taking intergral from 0 to 1 with respect to x, then we have

$$
\int_{0}^{1} \partial_{t} v v d x=\int_{0}^{1} \partial_{x}^{2} v v d x
$$

Then

$$
\begin{gathered}
\text { L.H.S }=\frac{d}{d t} \int_{0}^{1} \frac{1}{2} v^{2} d x \\
\text { R.H. } S=\left.\partial_{x} v v\right|_{0} ^{1}-\int_{0}^{1}\left(\partial_{x} v\right)^{2} d x=-\int_{0}^{1}\left(\partial_{x} v\right)^{2} d x \leq 0
\end{gathered}
$$

Then, we have for $t>0$

$$
0 \leq \int_{0}^{1} \frac{1}{2} v^{2}(x, t) d x \leq \int_{0}^{1} \frac{1}{2} v^{2}(x, 0) d x=0
$$

By the continuity of v, we have $v(x, t) \equiv 0,0<x<1,0<t<T$. Thus we have shown that $u_{1}(x, t) \equiv u_{2}(x, t)$ for $0<x<1, \quad 0<t<T$.
(Continuous dependence on initial data:) Let $v=u_{1}-u_{2}$, then v satisfies

$$
\left\{\begin{array}{l}
\partial_{t} v=\partial_{x}^{2} v, \quad 0<x<1, \quad 0<t<T, T>0 \\
\partial_{x} v(0, t)=0, \partial_{x} v(1, t)=0, \quad t>0 \\
v(x, t=0)=\phi_{1}(x)-\phi_{2}(x)=: \tilde{\phi}(x), \quad 0 \leq x \leq 1
\end{array}\right.
$$

Multiplying the both sides of $\partial_{t} v=\partial_{x}^{2} v$ by v and taking intergral from 0 to 1 with respect to x, then we have

$$
\int_{0}^{1} \partial_{t} v v d x=\int_{0}^{1} \partial_{x}^{2} v v d x
$$

Then

$$
\begin{gathered}
\text { L.H.S }=\frac{d}{d t} \int_{0}^{1} \frac{1}{2} v^{2} d x \\
\text { R.H.S }=\left.\partial_{x} v v\right|_{0} ^{1}-\int_{0}^{1}\left(\partial_{x} v\right)^{2} d x=-\int_{0}^{1}\left(\partial_{x} v\right)^{2} d x \leq 0
\end{gathered}
$$

Then, we have

$$
\sup _{0 \leq t \leq T} \int_{0}^{1} \frac{1}{2} v^{2}(x, t) d x \leq \int_{0}^{1} \frac{1}{2} v^{2}(x, 0) d x=\int_{0}^{1} \frac{1}{2} \tilde{\phi}^{2}(x) d x
$$

which completes the proof of the continuous dependence on initial data.

4. (20 points)

(a) (15 points) Derive the solution formula for the following initial-boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<+\infty, \quad t>0 \\
u(x, t=0)=\phi(x) \quad 0<x<+\infty \\
\partial_{x} u(x=0, t)=0, \quad t>0
\end{array}\right.
$$

by the method of reflection (with all the details of the derivation).
(b) (5 points) Let $\phi(x)=\cos x, 0<x<+\infty$. Find the maximum value of $u(x, t)$.

Solution:

(a) Use the reflection method, and first consider the following Cauchy Problem:

$$
\left\{\begin{array}{l}
\partial_{t} v=\partial_{x}^{2} v, \quad 0<x<+\infty, \quad t>0 \\
v(x, t=0)=\phi_{\text {even }}(x) \quad 0<x<+\infty
\end{array}\right.
$$

where $\phi_{\text {even }}(x)$ is even extension of ϕ which is given by

$$
\phi_{\text {even }}(x)= \begin{cases}\phi(x), & \text { if } x>0 \\ \phi(-x), & \text { if } x<0\end{cases}
$$

Then the unique solution is given by:

$$
v(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi_{e v e n}(y) d y
$$

And since $\phi_{\text {even }}(x)$ is even, so is $v(x, t)$ for $t>0$, which implies

$$
\partial_{x} v(x=0, t)=0, t>0
$$

Set $u(x, t)=v(x, t), x>0$, then $u(x, t)$ is the unique solution of Neumann Problem on the half-line. More presicely, $x>0, t>0$

$$
\begin{aligned}
u(x, t) & =\int_{0}^{\infty} S(x-y, t) \phi(y) d y+\int_{-\infty}^{0} S(x-y, t) \phi(-y) d y \\
& =\int_{0}^{\infty} S(x-y, t) \phi(y) d y+\int_{0}^{\infty} S(x+y, t) \phi(y) d y \\
& =\frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}+e^{-\frac{(x+y)^{2}}{4 k t}}\right] \phi(y) d y
\end{aligned}
$$

Here, $k=1$.
(b) By (a), the solution is given by $(k=1)$

$$
u(x, t)=\frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}+e^{-\frac{(x+y)^{2}}{4 k t}}\right] \cos y d y
$$

then

$$
|u(x, t)| \leq \frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}+e^{-\frac{(x+y)^{2}}{4 k t}}\right]|\cos y| d y \leq \frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}+e^{-\frac{(x+y)^{2}}{4 k t}}\right] d y=1
$$

That is, $|u(x, t)| \leq 1$. Note that $\max _{0<x<\infty} u(x, 0)=\max _{0<x<\infty} \cos x=1$, which implies that 1 can be attained by u. Hence

$$
\max _{0<x<\infty, t>0} u(x, t)=1 .
$$

5. (20 points)

(a) ($\mathbf{1 0}$ points) Prove the following generalized maximum principle:

If $\partial_{t} u-k \partial_{x}^{2} u \leq 0$ on $R \triangleq[0, l] \times[0, T]$ with a positive constant k, then

$$
\max _{R} u(x, t)=\max _{\partial R} u(x, t)
$$

here $\partial R=\{(x, t) \in R \mid$ either $t=0$, or $x=0$, or $x=l\}$.
(b) ($\mathbf{1 0}$ points) Show if $v(x, t)$ solves the following problem

$$
\left\{\begin{array}{lr}
\partial_{t} v=k \partial_{x}^{2} v+f(x, t), & 0<x<l, 0<t<T \\
v(x, 0)=0, & 0<x<l \\
v(0, t)=0, v(l, t)=0, & 0 \leq t \leq T
\end{array}\right.
$$

with a continuous function f on $R \triangleq[0, l] \times[0, T]$. Then

$$
v(x, t) \leq t \max _{R}|f(x, t)|
$$

(Hint, consider $u(x, t)=v(x, t)-t \max _{R}|f(x, t)|$ and apply the result in (a).)

Solution:

(a) Let $v(x, t)=u(x, t)+\epsilon x^{2}$, then v satisfies

$$
\partial_{t} v-k \partial_{x}^{2} v=\partial_{t} u-k \partial_{x}^{2} u-2 k \epsilon<0
$$

First, claim that v attains its maximum on the parabolic boundary R. Let $\max _{R} v(x, t)=M=$ $v\left(x_{0}, t_{0}\right)$. Suppose on the contrary, then either
i. $0<x_{0}<l, 0<t_{0}<T$.

In this case, $v_{t}\left(x_{0}, t_{0}\right)=v_{x}\left(x_{0}, t_{0}\right)=0$ and $v_{x x}\left(x_{0}, t_{0}\right) \leq 0$. Thus $\partial_{t} v-\left.k \partial_{x}^{2} v\right|_{\left(x_{0}, t_{0}\right)} \geq 0$, which is impossible.
ii. $0<x_{0}<l, t_{0}=T$.

In this case, $v_{t}\left(x_{0}, t_{0}\right) \geq 0, v_{x}\left(x_{0}, t_{0}\right)=0$ and $v_{x x}\left(x_{0}, t_{0}\right) \leq 0$. Thus $\partial_{t} v-\left.k \partial_{x}^{2} v\right|_{\left(x_{0}, t_{0}\right)} \geq 0$, which is impossible.
Hence

$$
\max _{R} v(x, t)=\max _{\partial R} v(x, t) .
$$

Then for any $(x, t) \in R$,

$$
u(x, t) \leq u(x, t)+\epsilon x^{2} \leq \max _{\partial R} v(x, t) \leq \max _{\partial R} u(x, t)+\epsilon l^{2}
$$

Letting $\epsilon \rightarrow 0$ gives $u(x, t) \leq \max _{\partial R} u(x, t)$ for any $(x, t) \in R$. Hence $\max _{R} u(x, t)=\max _{\partial R} u(x, t)$.
(b) Let $u(x, t)=v(x, t)-t \max _{R}|f(x, t)|$, then u satisfies

$$
\left\{\begin{array}{l}
\partial_{t} u-k \partial_{x}^{2} u=-\max _{R}|f(x, t)|+f(x, t) \leq 0 \\
u(x, 0)=0, \\
u(0, t)=u(l, t)=-t \max _{R}|f(x, t)| \leq 0
\end{array}\right.
$$

Hence the result in (a) implies that for any $(x, t) \in R$,

$$
u(x, t) \leq \max _{\partial R} u(x, t)=0
$$

that is, $v(x, t) \leq t \max _{R}|f(x, t)|$.

